

Animal models are needed For basic and translational research

- ✓ Study development & homeostasis of normal tissues
- \checkmark Physiopathology of human and animal diseases
- ✓ Validate new targets
- ✓ Test new therapeutic strategies
 - o PK
 - o PD
 - o Toxicity

 - F. Lassailly IOP Medical Physics Group London 1st Dec. 2014

1) Improve the (intrinsic) quality of animal models
2) Optimise the way we use animal models (extrinsic)
3) Develop best practice to maximise robustness and reproducibility
4) Report all studies appropriately

A strategic role for *in vivo* imaging facilities Support: Support: Support: Choice of animal models (including reporters etc) Choice of imaging technologies Support: S

Some applications

- Example 1: Haematopoietic stem cells and acute myeloid leukaemia
- Bioluminescence
 Near Infrared fluorescence
- Intravital microscopy
- Example 2: Non Small Cell Lung Cancer (GEMM)
- Micro-CT
- Response to t
- Kelapse

E Lassailly – IOP Medical Physics Group – London 1st Dec. 2014

New developments: Cerenkov Luminescence Imaging

Cerenkov light:

Electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium at a speed greater than the phase velocity of light in that medium.

F. Lassailly – IOP Medical Physics Group – London 1st Dec. 2014

ommon ra	dion	uclide	s for mol	ecular in	maging
Half-life	P *	B	Gamma		000
109.80 min	×		Tays	🦲	
9.97 min	×			🥌	
12.70 hrs	×			*** 🥌	
14.26 days		*		154	
2.67 days		ж		R	
6.65 days		ж		43.855	
5.03 days		ж	×	-	- 14 - 46
5.01 h/s				1	/
				2	1-
	Half-life 109.80 min 9.97 min 12.70 hrs 14.26 days 6.65 days 6.03 days 6.01 hrs	Half-life (1*) 109.80 min × 9.97 min × 12.70 hrs × 14.26 days × 2.67 days × 6.65 days × 6.01 hrs ×	telifelite p* p* 105.50 mm x 5 5 9.97 min x 1 1 1 12.70 hrs x x 1 12.70 hrs x x 1 14.26 days x 3 3 2.67 days x 5 5 6.65 days x 5 5 6.03 days x 5 5	damma radionuclides for molecular Half-life J* Gamma rays 109.80 min × 0.97 min × 12.70 hrs × × 14.26 days × 2.67 days × 6.65 days × 6.01 hrs × ×	ommon radionuclides for molecular in Half-life P Cammo Rays 105.80 mm x 5.97 min x 12.70 hrs x 12.70 hrs x 2.67 days x 6.65 days x 6.03 days x 6.01 hrs x

01/12/2014

Some applications

- Example 1: Haematopoietic stem cells and acute myeloid leukaemia
- Bioluminescence
- Intravital microscopy
- Example 2: Non Small Cell Lung Cancer (GEMM)

ont

- Micro-CT
- Response to treat
- Relapse

F. Lassailly – IOP Medical Physics Group – London 1st Dec. 2014

