

Translating MRS into clinical benefit for children with brain tumours

Andrew Peet
NIHR Research Professor

Childhood Cancer – The Facts

- Cancer is the most common cause of death from disease in childhood
- Brain tumours are
 - the most common solid tumours in children
 - the most common cause of cancer death in children
- 50 years ago 10% of children with cancer survived now more than 80% survive
- Improvements have not been so good in brain tumours

MRI and its limitations

Key component of the care for children with solid

cancers

Exquisite structural detail

BUT:

- Is it a tumour?
- If so what type?
- Is it aggressive?
- Will it respond to treatment?

Harry's Story

Presented 8 years old, visual problems

Biopsy 1/1,000 of the tumour

Chemotherapy – failed Radiotherapy - stable

4 years later tumour reactivated, intratumoural bleed

"The complete doctor"

Non-invasive diagnosis

Metabolite profiles differ between the tumours Davies et al NMR Biomed 2008

10 hospitals from 7 countries 98% accuracy in determining the diagnosis, 100% accuracy for broad tumour categories

"This study is the proof that MRS is useful and comparable even in a multicenter and multimodal setting in children."

CCLG Programme

Aunning costs at CCLG centres: scans & dala management of Birmingham & Birmingham Children's Hospital

St George's University of London

Institute of Cancer Research & Royal Marsden Hospital

University of Nottingham & University Hospital **Nottingham**

Institute of Child Health & **Great Ormond Street Hospital**

ICT and informatics

SIOPE

Prospective Evaluation

- Accuracy ~ 91% (vs 93% predicted)
- 3/33 incorrect :
 2 anaplastic
 ependymomas
 1 medulloblastoma
 with very unusual
 features
- Some cases
 classified correctly
 but with low
 confidence estimate

But can't we diagnose them with MRI?

Medulloblastoma

Pilocytic Astrocytoma

Ependymoma

Different morphological appearances but significant overlap

Establishing improved diagnostic accuracy

How do we use it? Added value and application in a clinical environment

Radiologist evaluation

Wilson and Reynolds

Prognostic Biomarkers

MRS at diagnosis in 155 children with brain tumours

Kaplan-Meier curves

A. Lipids(prior hypothesis)B GlutamineC N AcetylAspartateD Scylloinositol

Poor Prognosis

Good Prognosis

Significant in Cox regression and likelihood ratio tests. Objective: incorporation into international clinical trials

High Citrate indicates poor prognosis in diffuse astrocytomas

Bluml Neuro-oncology, 2011

Glutamate as a biomarker of poor prognosis in medulloblastoma

Subtle changes in vivo – need high quality signal processing

Wilson et al Clin Cancer Res 2014

Birmingham Children's Hospital NHS Trust

Tumour Heterogeneity and spectroscopic imaging

Thalamic diffuse astrocytoma

mlns - low grade

Cho – high grade

Peet Nature Reviews 2012

Distinguishing relapse from pseudo-progression

MRS at diagnosis very similar to that at relapse even when relapse is at a distant site

Enhancing lesion post treatment uncertain on MRI if relapse but MRS very different to diagnosis

Gill et al Neurooncology 2013

State of the art facilities for paediatric research embedded in the NHS

An Eye to the future Functional Imaging combine rather than compete:

Metabolite profiles

Metabolite maps

Quantitative imaging

Investigating children's cancer using functional imaging

Perfusion

Diffusion imaging

Tractography

Peet et al. Nature Rev Clin Onc

Poppy's Story

Diagnosed as an infant

Surgery 4 times
Chemotherapy multiple courses
Radiotherapy

50 MRI scans - each decision is made on a complex set of information

10 years later

Conclusions

New imaging methods can greatly enhance the management of patients

 Physics and engineering advances are required in many areas to enable their translation to clinical practice

 Collaboration between fundamental scientists, clinical scientists and clinicians is required in the translation.

Thanks to

- All those who have contributed to the research and provided slides
- Those who have funded the research
- The children and families who have supported and contributed to the research

Harry and Poppy's families.

In vivo clinical studies in adults with brain tumours

Single Centre – Pruel, Nature Medicine 1996 Multi centre – INTERPRET, Tate MRM 2003

Diagnosing Childhood Brain Tumours MRS Classifier Development

- Cerebellar tumours with pre-treatment MRS at 1.5T
- N=34 (after QC)
- 12 PA, 18 MB, 4 EP on histopathology
- Spectral fitting: LCModel
- PCA \Rightarrow LDA
- Cross-validation
- Accuracy ~ 93%