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This Newsletter...

Dear Readers,

The feature article for this bumper edition of the newsletter is an invited contribution by Dr Cathal Ó Broin
from the Dublin City University, our winner of the 2016 IoP Computational Physics Group PhD Prize, on
‘A New GPU-based Computational Framework for the Ab-initio Solution of the TDSE for Atomic and Molecular
One-Electron Systems under Intense Ultra-Short Laser Fields’.
Dr Cathal Ó Broin also kindly provided the cover image for this edition.
In addition, we have two invited contributions from Bartomeu Monserrat and Andrew Goldsborough our
runners-up of the 2014 and of the 2016 IoP Computational Physics Group PhD Prize.

Most URLs in the newsletter have web hyperlinks and clicking on them should take you to the correspond-
ing page. The current edition of the newsletter can be found online at:

www.iop.org/activity/groups/subject/comp/news/page_40572.html

with previous editions at:

www.iop.org/activity/groups/subject/comp/news/archive/page_53142.html
www.soton.ac.uk/∼fangohr/iop_cpg.html

As always, we value your feedback and suggestions. Enjoy this edition!

Marco Pinna, Newsletter Editor B mpinna@lincoln.ac.uk)

(on behalf of the The Computational Physics Group Committee).
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A New GPU-based Computational Framework for the Ab-initio
Solution of the TDSE for Atomic and Molecular One-Electron
Systems under Intense Ultra-Short Laser Fields
Cathal Ó Broin
Irish Centre for High-End Computing (ICHEC),Tower Building, Trinity Technology & Enterprise Campus, Grand Canal
Quay, Dublin 2, Ireland
L. A. A. Nikolopoulos
School of Physical Sciences, Dublin City University, Collins Ave, D9, Dublin, Ireland
National Centre for Plasma Science and Technology, NCPST, Collins Ave, D9, Dublin, Ireland

Abstract

In this article we discuss two mutually beneficial ways of improving the computational tractability of
TDSE calculations. In the first, the RMT approach for H+

2 which was developed is discussed. It is the
first derivation and implementation of a Time-Dependent R-Matrix approach on a molecular system. This
method involves the division of the molecular system into two regions which use different representations;
an energy eigenstate representation in an inner region and a grid representation in an outer region [1].
The second area is on the use of GPGPU techniques applied to basis and grid approaches as well the
molecular RMT approach. Specifically, the Arnoldi-Lanczos (Krylov Subspace), Runge-Kutta, Taylor series
approaches to propagating the interaction of the light pulses with the atomic/molecular system as well as
a GPU parallelisation related to the RMT method [2, 3].

Introduction

Within computational atomic physics, significant progress has been occuring in terms of the sophistication
of computational models and the compute power available in modern HPC systems. Recent advances in
Time Dependent R-Matrix have also been made, such as work on double ejection. The computational
challenges remain immense. While there have been technical advances in compute systems, the physics
hasn’t remained a stationary target. New advances such as HHG and FEL have led to new challenges such
as modelling the behaviour of attosecond pulses and very-intense pulses on atomic and molecular systems.
Even today, the ab-initio propagation of a hydrogen atom interacting with an intense ultra-short laser
pulses generated by Titanium Sapphire lasers (λ ≈ 800 nm) a computationally massive problem. As one
moves into the infrared regime (> 1200 nm), the problem can become computationally intractable. This is
due to an explosion of size in the state space required to approximate the system.
For molecular systems, the challenges are even greater than in atomic systems due to the loss of rotational
symmetry. There are two key but orthogonal approaches to ameliorating these problems; more sophisti-
cated computational models and advanced optimisation strategies using cutting-edge HPC hardware. Both
approaches can unlock spectacular improvements in performance. As a result, our work has involved these
two main strands in helping to investigate fundamental processes in laser-matter interactions. In the fol-
lowing two sections we briefly discuss work in both areas.

RMT Theory for Molecules

In ab-initio simulations of single-electron atoms and molecules in intense laser fields, the TDSE is solved
with as few approximations as possible. There are two popular approaches for solving the systems (amongst
others).
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Figure 1: The division of space with an inner region with an B-spline energy eigenstate representation
and an outer region with a grid representation using finite-differences. The dotted line is of length rb and
represents the radius from the centre which is marked G to boundary. rn is the radius of the nth electron
from the centre. The nuclei are marked A and B. The distance from A to the nth electron is |rn − ra| while
the distance is |rn − rb| for the other nuclei. (from [1])

One approach is to consider the system in terms of energy eigenstates. If the system is initially in its
ground state then the laser field couples other states. The electron wavefunction is then described by some
linear combination of eigenfunctions:

∑
γ Cγ(t)Φγ(r) where each eigenfunction has an associated energy

Eγ . These field-free eigenfunctions are pre-calculated and the unknown quantities are the associated time-
dependent coefficients.
The other approach is a grid approach. The wavefuncton is now represented in terms of angular momenta
components:

∑
γ

1
rfl(r, t)Ylm(Ω). In the energy eigenbasis approach the time dependence is contained in a

function which only depends on time: Cγ(t) but the grid approach is dependent on fl(r, t).
In the first case the laser field coupling is represented by an ODE with matrix structure which is block
tridiagonal where the off-diagonal blocks are full. In the grid representation case, one has a sparse matrix.
Both equations can be solved by generic methods to solve differential equations. The Taylor series method,
the family of Runge-Kutta methods and the Arnolid-Lanczos (Krylov subspace) approach are often used.
In the calculation of atomic and molecular systems, the wavefunction is set to only be present within
a specific region. This is equivalent to modifying the central potential with a radial boundary which is
infinitely high so that the system is in an infinite spherical well, i.e putting the system in a box. The radius
of the box should be large enough so the system is not significantly modified by the box, whether that
be from significantly distorted eigenstates or unphysical reflections of wave-packets back into the system.
Seeing if the box size and discretisation is suitable can be tested by increasing the size of the box and
decreasing the spacing during repetitions of the same calculation. The box can be taken as having no
discernible effect if the results are converged. The effect of the box is to select only those continuum states
which are zero on the boundary, so that the state of the system is now a summation over bound and
discretised ionisation states and the discretised-continuum states are now square-integrable since they are
necessarily zero outside of the box. This means the states can also be normalised, so that the normalisation
criteria holds. The grid spacing also limits the highest energies which can be represented (by Nyquist’s
theorem).
Considering the bound energies are also limited in value depending on the specific B-spline and grid, the
summations can be notationally unified into a single sum over the energy index, n:

Ψ(r, t) =
∑
n

Cnλ(t)
∑
l∈lλ

Yl0(Ω)
1

r
Pnl(r), (1)
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where λ indicates the symmetry, gerade (g) or ungerade (u), and
∑

l∈lλ indicates a sum over all angular
momentum components of the symmetry, specifically a sum over even (λ = g) or odd (λ = u) numbers.
In the RMT approach the basis and grid approaches are propagated simultaneously in different regions
of the “box”. This is done by dividing the molecular system into two regions as shown in figure 1, an
inner-region which uses a basis expansion and an outer-region which uses finite differences on a grid. The
arbitrary value the wavefunction can take at the inner-region boundary between the regions means that the
Hermiticity of the basis is lost. The RMT approach uses a neat Bloch-operator trick at the boundary to make
the system’s Hamiltonian Hermitian and so the eigenfunctions and eigenvalues one calculates are real 1.
It’s important to note that unlike the atomic case, the angular momentum does not with the Hamiltonian
operator, so the coupling of partial waves doesn’t have the same one-to-one correspondence as it does in
one-electron atoms. Rather, each energy eigenstate is decomposed into partial wave components 2. This
allows for the modelling of the probability density flux flowing through from the inner region to the outer.
The RMT approach was tested by comparing calculations to literature values, checking the simulation was
agnostic to the boundary position and checking that basic laser-physics features were replicated.
This treatment is done with the future aim of separating multi-electron dynamics in the inner region from
one-electron dynamics in the outer region; this will massively reduce the dimensionality problems of multi-
electron molecular systems.
The eigenvalues and eigenvectors from the Bloch-augemented TDSE don’t correspond to the physical sys-
tem, so the actual ground state of the system is described as a mixture of these Bloch-augmented states.
The ground state is calculated by propagating the Bloch-augmented states with complex time propaga-
tion of the (augmentation corrected) TDSE. This causes causes the underlying lowest lying energy state to
grow at a rate of e|Eγ |. With some propagation and normalisation steps, the system settles into the ground
state. During this process, one can see probability flux flowing through the boundary and across the partial
waves.
The case for using the RMT approach for H+

2 is stronger than in the hydrogen case due to an increase
of the dimensionality problems in the basis method. The number of eigenstates scales with the square of
the radius and the square of the number of angular momenta terms (i.e N2L2 compared to N2) due to
the loss of rotational symmetry in the central potential. Calculations up to 3000 atomic units are feasible
for Hydrogen, for H+

2 diagonalisation and propagation of the basis with any significant number of L, it
is not currently possible. This problem does not exist in the RMT case. We limit the size of the basis to
the inner region. This provides us with the flexibility of knot points etc and precision from B-spline basis
methods. The finite difference outer region lends itself to a very powerful approximation at large distance;
a key advantage of a grid representation is that a molecular potential can be approximated by a hydrogenic
target at a sufficient distance from the nuclei. A hydrogenic potential does not couple terms in the central
potential and thus reduces memory and computational requirements significantly. This makes the large
distances comparative to the hydrogen basis realisable.

CLTDSE

The code written from scratch for the current work is known as CLTDSE. It’s primary function is to imple-
ment methods for the time propagation of atomic and molecular quantum systems under the interaction
of laser fields which are described classically (i.e the semi-classical approximation). For this, three repre-
sentations of the quantum system are directly supported:

• Basis Methods

• Finite Difference

• RMT (mixed-methods)
1Our matrix is actually now symmetric
2see [1] for the specific equations which govern the system
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Figure 2: An example output from CLTDSE. The strength of the time-dependent radial probability current
jr(rb,Ω, t) at a fixed radius rb = 9.98 a.u and for θ from 0 to π, over the duration of the pulse. The pulse
was a 1 × 1015 W/cm2, 10 eV and 10 cycle sine-squared pulse. Since m = 0, the angle, φ, plays no role.
(from [3])

For the RMT and basis methods, the code also includes an ability to solve the time-independent Hamilto-
nian for H and H+

2 using a B-spline basis. Relevant data, such as B-spline coefficients, eigenenergies radial
eigenfunctions or components of the radial eigenfunction expansion (H+

2 ), are written to a NetCDF format.
For the RMT and finite difference, support is also required for solving the diffusion equation for the ground
state eigenenergy.
For solving the TISE and TDSE, 3 methods are supported:

• The Taylor-expansion method

• The family of Runge-Kutta methods 3.

• The Arnoldi-Lanczos approach to shrinking the Hamiltonian matrix to a subspace where only a few
basis vectors are required.

The basis and finite difference methods support all three approaches, while the RMT work focusses on the
Taylor expansion. For the TDSE solution, a variety of laser pulses are also implemented in the code, from
Trapezoidal, Sine-squared and Gaussian pulses, to pulses imported directly from real lasers pulses (using
interpolation to support different time-steps), to pulses generated from a variety of stochastic approaches.
The velocity-gauge vector potential is also supported through direct numerical integration.
A number of post-propagation analysis functionality is also supplied for all three representations. This
includes the standard yield, ground state population etc, but also more interesting calculations such as the
angle-dependent yield and the propability density as shown in Fig. 2 for Hydrogen. The figure shows how
how the orientation of the field along the z-axis induces probability flux to flow outwards parallel with the
orientation of the laser field (which alternatives between being parallel and anti-parallel with the z-axis) at
that time. The effect of the laser pulse striping away probability density away from the atomic or molecular
system is shown particularly clearly in this view.

GPGPU

All major clusters or supercomputers consist of many nodes. Each node itself consists of one or more
processors which have multiple cores. These nodes now often have accelerators such as graphic cards. The

3RK4, RKF-4(5), Merson, Cash-Karp, Radau, Dormand-Prince etc
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nodes, which are increasingly heterogeneous, are interconnected through a high speed network that has a
specific topology. These topologies vary depending on the specific system.
In the past two decades there have been several advances in various directions in the state of the compu-
tational infrastructure available. This includes reliable and robust numerical libraries, sophisticated com-
pilers, high speed inter-connected nodes with high bandwidth memory and HPC capabilities as well as
visualisation software. The emergence of CPU-based parallel architectures allowed the development of
High Performance Fortran, various parallel versions of C++ and the successful usage of MPI and OpenMP.
After the emergence of these commodity systems, HPC infrastructure has moved away from custom fully
integrated systems towards distributed computing models. These rely heavily on interconnected commod-
ity machines. Now, these distributed systems are being augmented with various forms of accelerators.
Accelerators focus on optimising a specific class of problem and there is a growing interest in heteroge-
neous computational environments. In ICHEC and CINECA4 this involves the use of plGPU to augment an
efficient and low-cost, distributed hybrid computing system [4] as well as the use of other co-processors
such as the Intel Phi as in ICHEC. The use of plGPU as computational accelerators is known as GPGPU.
The focus for plGPU is on problems which are computationally heavy and throughput-focused rather than
latency bound.
Currently GPGPU is focused on the use of discrete cards but with the current ongoing convergence between
CPU and GPU it is expected that the trend is for GPGPU with double precision to be available on integrated
chips and provide improved communication performance. The main benefit of the integration will be the
lower latency and higher bandwidth between the GPU and CPU.
The GPGPU acceleration of simulations is a hot topic because of the flops per euro cost of GPUs in compar-
ison to CPUs when looking at well-suited algorithms. Although originally for games, GPUs are many-core
devices with a SIMD design. On a HPC system, the GPUs are a comparable price to their CPU counterparts
on each node, while the performance achievable for scientific simulations may be orders of magnitude
greater.
OpenCL is a modern compute-accelerator orientated language which has much similarity with CUDA except
that it is not tied to a single vendor, but rather operates on hardware from NVIDIA, AMD, Intel, Xilinx,
Altara etc and on devices from CPU, GPUs, Intel Phi and FPGA etc. Code is portable, but not performance
portable, so significant architectural details are required when implementing code. Since 2010, accelerator
availability on the top 500 HPC systems has risen from 9 in June 2010 to 85 by June 2015 with most being
split between NVIDIA GPUs and the Intel Phi 5.
Due to the explosion of GPGPU work from about 2007, double precision support has been available on the
cards for some time, where full or near full IEEE-754 conformance appeared during the course of the work.
Double precision is required for the calculation of atomic structure and in the subsequent time propagation
under a light field 6.
The opportunities are immense for our field because ab-initio methods for calculating the dynamics of light-
matter interactions are generally very parallelisable as the core bottleneck is a matrix-vector problem with
either full-blocks or known structure. The practical exploitation of GPU significantly reduced the runtime
of the code. The basis approach is not particularly computationally dense, but the parallelisability of the
algorithms and the fact that the data access battern is highly uniform leads to a priority of high bandwidth
over latency which perfectly suits the high bandwidth available while the very poor latency to the global
memory of the GPU is masked.
GPU parallelisation efforts do not contribute by accelerating the integration method itself; the Runge-Kutta,
Arnoldi-Lanczos and Taylor methods are serial, and the calculation of each derivative is done sequentially.
That is, the methods require multiple derivatives to be calculated, where each new derivative calculation

4ICHEC is the national high performance computing centre for Ireland while CINECA is a facility in Bologna funded by a
consortium of Italian universities.

5http://top500.org/statistics/overtime/
6Unfortunately, GPU manfacturers (initially NVIDIA but also now AMD) limit double precision FLOPs on their consumer-grade

cards.
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Figure 3: The speedup of the NVIDIA K20X, AMD R9 280X and NVIDIA M2070 in comparison to a 2×10
core Intel Xeon’s.

requires information from the previous derivative. Rather than using a parallel integration algorithm, the
matrix vector calculation that is performed at each time step is, itself, parallelised. GPU are the natural
partner to this form of embarrassingly-parallel, linear-algebra acceleration. All of the major portions of the
time propagation approaches were performed directly on the GPU.
The grid approach can be done such that it is relatively computationally dense. After parallelising the code
on a K20X GPU and exploiting intercache data locality by exploiting the Hermiticity of the problem, the
performance improved about 20 times, as shown in 3 in comparison to a 2×10 core Intel Xeons as the loads
tested increased in size7. What is also interesting is that the AMD R9 280X, a commodity graphics card,
was an order of magntitude cheaper than the Intel Xeons and the NVIDIA K20X. Although the performance
didn’t equal the K20X, it still reduced the runtime by half in comparison to 2 very expensive CPUs.

Concluding statement

This work constitutes a significant advance in computational physics on two fronts.
From the creation of the RMT method in 2008 [5], work since has focused on various aspects of atomic
systems [6, 7, 8] including recent double-ionization work [9]. In this article, we have discussed the first
extension of RMT theory to molecules. The work has focused on H+

2 since it is the simplest molecular
system. This extension reduces the dimensionality problems in H+

2 , since one can now have a full basis
inner region and have a finite difference outer region which decouples the angular momenta terms as the
hydrogenic approximation becomes valid (V (r) ≈ VH(r) ).
In the remainder of the article, the first native GPGPU-based ab-initio TDSE propagator for atoms and
molecules in intense laser fields has been discussed. The propagator used the OpenCL framework to achieve
large speedups on the GPU against OpenCL on the CPU. This makes problems more computationally real-
isable.
The introduction of multielectron dynamics in this work will be an exciting future development of the
RMT approach, and the future usage of GPUs within the field will also significantly advance the feasible
simulations available to researchers. MPI parallelism can be combined with GPU parallelism to provide
mutually beneficial effects for scalability. MPI parallelism allows more nodes to be included at scale while
a GPU can help reduce the load on a particular node. This heterogenous parallelism represents a new and
exicting area for future study on ab-initio time propagation. Future work on both strands will have highly
novel possibilities.

7The scaling had also not plateaued either, but rather our compute hours allocation had
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Introduction

At its most fundamental level a quantum many-body system can be defined by a Hilbert space H and a
Hamiltonian H describing the evolution of states in H. But with ∼ 210

23
states for just a single mole of,

e.g., spin-1/2 particles, computing ground states and excitations remains a formidable challenge. Fortu-
nately, advanced numerical methods have been developed in the last decades to tackle the problem. Whilst
density-functional theory, dynamical mean-field theory, quantum Monte Carlo and their variants and ex-
tensions have allowed us to study systems with hundreds – and sometimes thousands – of atoms in three
dimensions, large strongly correlated systems are more problematic. However, much has been learned in
low dimensional systems by applying concepts from quantum information to many body physics. At the
heart of this understanding lies the realization that not all states in H are equal in terms of their entangle-
ment properties. For a general state inH the entanglement entropy SA|B scales as the volume of subsystem.
However, for ground states of gapped systems, the entanglement scales as the area of the boundary separat-
ing the subsystems. This is the famous area law for entanglement entropy [1, 2, 3]. It suggests that much
of the low energy physics is likely to be well described by a much smaller, area law satisfying subset of H.
The success of tensor network methods is down to their ability to capture the entanglement described by
the area law and provide a variational ansatz within the space of area law satisfying states [4]. The sim-
plest tensor network, the matrix product state (MPS), is at the heart of the density matrix renormalisation
group (DMRG) algorithm, accepted to be the most accurate approach for the numerical study of strongly
correlated 1D systems [5]. In 2D, one has to use more sophisticated tensor networks such as projected
entangled pair states (PEPS) to make progress.
The area law for SA|B in quantum-many body systems was foreshadowed in the theory of black hole
thermodynamics. It had been found [6, 7] that black holes have a thermal Bekenstein-Hawking entropy
SBH = Ah

4G , that scales with the surface area Ah of the black hole horizon; G is Newton’s gravitational
constant. For SA|B, Ryu and Takayanagi [8] suggest a similar extension in the context of the so-called
AdS/CFT correspondence, i.e. the duality between quantum gravity on a D + 2 dimensional Anti-de Sitter
(AdS) spacetime and a conformal field theory (CFT) defined on its D + 1 dimensional boundary [9]. The
entanglement entropy of a region A of the CFT is related to the size of the surface with smallest area,
or minimal surface γA, within the AdS bulk that separates A from the rest of the system. This is shown
pictorially in fig. 1. In condensed matter systems, AdS/CFT can provide a geometric interpretation of the
renormalization group (RG) approach. The additional holographic dimension can be interpreted as a scale
factor in the RG coarse graining [10]. This analogy gives SA|B =

AγA
4G

(D+2)
N

, where AγA is the area of the

minimal surface γA and G(D+2)
N is Newton’s constant in D + 2 dimensions. As we shall see, these concepts

underpin the success of tensor networks that satisfy the area law and beyond.
For disordered and interacting systems, the variational refinement of tensor networks can already be too
costly and has to be balanced with the need to additionally average of many, sometimes thousands of
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minimal surface

holographic dimension

Figure 1: A diagrammatic representation of the AdS/CFT correspondence, showing a (D + 1) dimensional
CFT on the boundary of a (D+ 2) dimensional AdS spacetime. The entanglement entropy of a region A of
the CFT is proportional to the minimal surface γA that separates A from the remainder of the CFT.

disorder realizations. As we will show here, instead of variationally refining a particular tensor network, a
strategy that self-assembles the tensors according to a physically motivated, realisation-specific disordered
network provides a viable alternative strategy.

Matrix Product States

Consider a quantum system with basis states |↑〉 and |↓〉 for each site in a system with L sites. Simple
product states can be formed as tensor product of the bases [11], for example |↑〉⊗ · · ·⊗ |↑〉. For, e.g. L = 2,
any state can be written as a superposition of all possible two site product states,

|Ψ〉 = (u1 |↑〉+ d1 |↓〉)⊗ (u2 |↑〉+ d2 |↓〉) =
∑
σ1,σ2

Cσ1,σ2 |σ1〉 ⊗ |σ2〉 , (2)

where σi can be ↑ or ↓, ui, di are numerical coefficients and Cσ1,σ2 is a two component tensor with elements

C =

(
u1u2 u1d2
d1u2 d1d2

)
. (3)

Product states such as (2) have bases independent of each other and the expectation values factorise. On
the other hand, entangled states such as

|Ψ〉 =
1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉) (4)

do not have factorising expectation values. The maximally entangled state (4) would require a tensor of
the form

C ≡
σ2 =↑ σ2 =↓

σ1 =↑ 0 1/
√

2

σ1 =↓ −1/
√

2 0

=
1√
2

(
0 1
−1 0

)
, (5)

which cannot be described by the coefficients u1, d1, u2 and d2 in eq. (3). Instead, let us introduce matrices
[12],

M1 =
1
4
√

2

(
1 0
0 1

)
, M2 =

1
4
√

2

(
0 1
−1 0

)
. (6)
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(a) (b)

Figure 2: Diagrammatic representation of (a) the two site MPS in eq. (7) and (b) the general L site MPS
of eq. (8). The circles represent the M tensors and the lines are the tensor indices. The horizontal lines
represent the bond indices, the vertical lines the physical indices.

These matrices, combined using a standard matrix product, can easily produce the entangled state

Cσ1,σ2 =
∑
a

[M1]
σ1
a [M2]

σ2
a ⇒ C =

1√
2

(
0 1
−1 0

)
, (7)

as desired. The a index introduces entanglement between the two states and can be thought of as a form of
bond. Note that we have chosen the upper and lower placement of the indices for later convenience. Eq. (7)
defines the simplest matrix product state (MPS). It can be expressed diagrammatically as in fig. 2(a), where
the matrix is drawn as a circle and each index is represented by a line or leg. The matrix multiplication,
or more generally tensor contraction, is shown by joining the lines that represent the summed over index.
These diagrammatic representations of the state become very convenient for larger and more complicated
tensor networks and are commonplace in the literature.
A general wavefunction on a lattice of L sites can be written as |Ψ〉 =

∑
σ1,...,σL

Cσ1...σL |σ1〉 ⊗ · · · ⊗ |σL〉.
As with the two site case, the Cσ1...σL tensor can be split into a series of local tensors with connections
to their neighbours that allow the inclusion of entanglement. When away from boundaries each site has
two neighbours thus the tensors at each site have three indices; one for the site basis and one for each
neighbour. In full the wavefunction takes the form

|Ψ〉 =
∑

σ1,...,σL

∑
a1,...,aL−1

Mσ1
a1 M

σ2
a1a2 . . .M

σL
aL−2aL−1

MσL
aL−1
|σ1, . . . , σL〉 , (8)

where |σ1 . . . σL〉 ≡ |σ1〉 ⊗ · · · ⊗ |σL〉 and Mσi
ai−1ai ≡ [Mi]

σi
ai−1ai

. The σi indices label the spins of the basis
and are known as the physical indices, whereas the ai are the bond, virtual or auxiliary indices. To draw
a distinction between the two index types, it is convention to have the physical σi as upper indices, thus
giving the standard form of an MPS [5]. As before, the MPS can be represented diagrammatically as a
chain of circles connected horizontally by the bond indices and with the physical indices drawn vertically
as in fig. 2(b). Note that (8) corresponds to a state with open boundary conditions (OBCs) as is evident
from the special tensors Mσ1

a1 and MσL
aL−1

at the sites 1 and L.
The MPS (8) is an exact representation of any state in H. When increasing site index i up to the centre of
the chain, the size of each Mσi

ai−1ai increases. For example when i = L/2 the dimensions of the MPS tensor

are [d, d
L
2
−1, d

L
2 ], where d is the dimension of the site basis, e.g. d = 2 for spin-1/2 systems. This means that

the number of elements of the centre tensor is dL as expected when all of the information is preserved. By
limiting the size of the bond indices, known as setting the bond dimension χ, one truncates the size of the
Hilbert space allowing much larger system sizes to be computationally tractable. Setting χ also controls
the amount of entanglement that the wavefunction (8) can have. Due to the fact that ground states of
gapped Hamiltonians satisfy the area law, and therefore have relatively little entanglement, setting a finite
χ still allows for an accurate description of the wavefunction. For example, while exact diagonalisation is
usually limited to L ∼ 30 sites [13], the MPS approach can study many hundreds of sites with χ ∼ O(103)
[14]. The MPS can be used as a variational ansatz by sweeping back and forth across the chain choosing
the contents of each Mσi

ai−1ai that minimises the energy. This variational MPS algorithm is often referred to
as DMRG, despite the fact that the original DMRG algorithm [15] does not use an MPS. A full discussion
of MPS based DMRG can be found in reference [5].
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(a) (b)

Figure 3: (a) For an MPS a region A (shaded blue) is bounded by two bonds, denoted by red lines. If
the size of A is increased the number of bonds stays at 2. The bold green line highlights the minimum
path between two sites. (b) A PEPS on a square lattice, where the PEPS tensors are blue squares, the
virtual indices are in the plane, and the physical indices are those pointing up. As before, the region under
consideration is highlighted in blue and the bonds that separate it from the rest of the system are shown
by red lines. Here the boundary scales as 4L and is therefore area law conserving.

Tensor networks

The Area Law for Entanglement Entropy

As highlighted in the introduction, the area law states that the entanglement entropy for ground states in
gapped quantum many body systems scales with the boundary of a subsystem rather than the volume. This
means that these ground states are significantly easier to simulate on a classical computer than generic
states. For tensor networks the boundary is quantified by the number of bonds nA connecting region A to
the environment B. The reasoning behind this measure is that if all of the tensors are identical, with a
bond dimension χ the maximum contribution to the entanglement entropy per bond is log2(χ). Evenbly
and Vidal [16] go further to suggest that for most cases of homogeneous tensor networks the entanglement
per bond is approximately 1, hence SA|B ≈ nA. The boundary of a region in a 1D system is simply two
points and does not increase when the region is expanded. An MPS has these same properties; the number
of bonds that one would have to cut to separate region A from B is 2 and does not change if the size of A
is altered, as shown in fig. 3(a). The fact that the MPS has the same entanglement properties as the ground
state of a gapped 1D system makes it an ideal variational ansatz for such problems and gives a reason for
the excellent scaling for these systems.
The area law also explains why performance of DMRG for critical and 2D systems is worse. For critical
systems the entanglement entropy scales logarithmically with the region size, SA|B ∝ log(L) [17, 18],
hence the χ required for accurate DMRG increases with system size. For 2D, take for example a square
lattice with a square region within it. If the region has side length L, the area law suggests that the
entanglement entropy should scale as its boundary SA|B = 4L ∝ L, thus the MPS is insufficient as a
variational ansatz for this system. An area law conserving ansatz would be a tensor network where all sites
are connected to their four neighbours to match the lattice geometry, as shown in fig. 3(b). This tensor
network is known as a projected entangled pair state (PEPS) and is can be viewed as natural 2D extension
of the MPS [19, 20].

Beyond the Area Law

Tensor networks, particularly the multi-scale entanglement renormalisation ansatz (MERA) [21, 22], can
be seen as a coarse grained embodiment of AdS/CFT [16, 23]. The structure of MERA, shown in fig. 4(a),
is made up of disentanglers (green squares) and isometries (pink triangles). The intuitive argument behind
its construction is that the disentanglers remove short range entanglement so that the isometries can then
remove degrees of freedom that are no longer coupled to the system. The network is self-similar in the
way that at each level of coarse graining the network looks the same. This direction of coarse graining,
perpendicular to the physical lattice, is the extra holographic dimension.
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(a) (b)

Holographic 
Dimension

Lattice 
Dimension

Figure 4: (a) Tensor network diagram of a MERA with periodic boundary conditions where the green
squares are disentanglers, pink triangles are isometries and the blue circle is the top tensor. A region of the
network corresponding to L sites is highlighted in blue, where the bonds making up the minimum surface
are highlighted by the red lines. The bold green line highlights a geodesic connecting two points on the
lattice. (b) The SDRG algorithm as a TTN for a chain of L = 20 sites. Shapes and lines are as in (a). Lattice
and holographic dimensions are indicated by the dashed arrows.

Just as with MPS and PEPS, the minimal surface γA is found by counting the minimum number of bonds
that have to be cut to separate one region from the rest of the system. Take, for example, a region comprised
of L sites within a MERA as shown in fig. 4(a). The minimum number of bonds (red lines in fig. 4(a))
nA ≈ log(L), which matches the entanglement scaling of critical systems [16]. As an extension of this, it
was shown [24, 25] that in the continuum limit of MERA it has a metric that matches the properties of
AdS/CFT.
In addition to entanglement entropy, similar arguments hold for two-point correlation functions [23, 16].
The asymptotic scaling of correlation functions should be

CTN(x1, x2) ∼ e−αDTN(x1,x2), (9)

whereDTN is the path with the minimum distance or geodesic connecting points x1 and x2 within the tensor
network. For MPS DMPS = |x2 − x1|, as shown as the bold line in fig. 3(a). Hence

CMPS(x1, x2) ∼ e−αDMPS(x1,x2) = e−|x2−x1|/ξ, (10)

where ξ is the correlation length. MERA, on the other hand has path lengths that scale logarithmically with
separation of x1 and x2 (DMERA(x1, x2) ∝ log2(L)), as shown in fig. 4(a). Thus

CMERA(x1, x2) ∼ e−αDMERA(x1,x2) = |x2 − x1|−q, (11)

recovering the power law decay profile characteristic of critical systems.

Structurally inhomogeneous tensor networks

For disordered quantum many-body systems, the strong-disorder renormalisation group (SDRG) provides
a powerful means of analysing a system by concentrating principally on the disorder within it. The ap-
proach was originally devised by Ma, Dasgupta and Hu [27, 28] for the random anti-ferromagnetic (AFM)
Heisenberg chain where the coupling constant is different for each position, taking a random value. The
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(a) (b)

Figure 5: (a) Reproduced from [26]. Correlation function for L = 150 averaged over 2000 samples for the
direct calculation of 〈〈~sx1 · ~sx2〉〉 (black circles) and also via the holographic approach (12) using DTTN
(dashed red line with error of mean indicated by the grey shading) such that 〈〈~sx1 · ~sx2〉〉 ≈ (5.81 ±
0.93)exp[−(0.62 ± 0.02)DTTN]. The expected thermodynamic scaling |x2 − x1|−2 is also shown (solid blue
line). Inset: The holographic path length DTTN connecting sites x1 and x2 averaged over the 2000 TTNs
(black) and a fit in the logarithmic regime (red). (b) Rescaled correlation function to remove odd-even
effects on a semi-log plot. The expected thermodynamic scaling is shown as a solid blue line. The fitted
scaling factor from (a) is plotted as a solid green line. The red line indicates the alternative holographic
fitting with 〈〈~sx1 · ~sx2〉〉 ≈ (1.67± 0.10)〈exp[−DTTN]〉(0.69±0.01).

principle behind the SDRG is to eliminate the most strongly coupled pairs of spins and replace them with
an effective interaction that couples the spins at either side. The most strongly coupled pair are thought
of as being frozen into a singlet ground state as the neighbouring interactions are significantly weaker –
ultimately leading to the random singlet phase, which is the ground state of the system [29]. This freezing
out of pairs of sites is conceptually similar to the removal of local degrees of freedom in MERA and also
suggests the possible usefulness of concepts from AdS/CFT for disordered spin chains.
The SDRG method was extended by Hikihara et. al. [30] to include higher states at each decimation,
in the spirit of Wilson’s numerical renormalisation group [31] and DMRG [15]. This method therefore
decomposes the system into blocks rather than larger spins allowing for more accurate computation of,
e.g., spin-spin correlation functions. The more states that are kept at each decimation the more accurate
the description and it is exact in the limit of all states kept. This numerical SDRG amounts to a coarse-
graining mechanism that acts on the operator. We show in reference [26] that it is equivalent to view this
as a multi-level tensor network wavefunction acting on the original operator. The operators that coarse-
grain two sites to one can be seen as isometric tensors or isometries that satisfy ww† = 1 6= w†w. When
viewed in terms of isometries, the algorithm can self-assemble a tensor network based on the disorder of
the system. When written in full, it builds an inhomogeneous binary tree tensor network (TTN) as shown
in fig. 4(b). We shall henceforth refer to this TTN approach to SDRG as tSDRG. For a full description of the
algorithm see reference [26].

Correlation Functions

The correlation functions for a strongly disordered Heisenberg chain are expected to disorder-average to a
power-law decay with power |x2 − x1|−2 [29]. As discussed in the previous section, correlation functions
in tensor networks scale as e−αD(x1,x2), where D(x1, x2) is the number of tensors that connect site x1 to
x2 [16], for example D(6, 13) = 5 in fig. 4(b) highlighted in green. tSDRG has a holographic geometry
based on a random TTN, with average path length 〈DTTN〉 ≈ log |x2 − x1|, i.e. scaling logarithmically with
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distance. This makes it ideally suited to capture the desired power law decay

〈〈~sx1 · ~sx2〉〉 ∼ e−α〈DTTN(x1,x2)〉 ∼ e−αlog|x2−x1| ∼ |x2 − x1|−a. (12)

In fig. 5(a), we show the behaviour of 〈〈~sx1 · ~sx2〉〉, with 〈〈·〉〉 denoting quantum and disorder averages,
computed directly as well as its holographic estimate based on (12). We find that the behaviour for |x2 −
x1| � 1 and |x2 − x1| < L/2 is indeed very similar for both approaches. We find that in the indicated
distance regime, both measures of 〈〈~sx1 ·~sx2〉〉 are consistent with the expected r−2 behaviour. For |x2−x1| &
L/2 we see that the boundaries lead to an upturn of 〈〈~sx1 ·~sx2〉〉 for both direct and holographic estimates.
This upturn is a result of boundary effects and can easily be understood in terms of the holographic TNN;
for |x2 − x1| ≥ L/2, the average path length in the tree decreases [32]. In the inset of fig. 5(a) we show
the distance dependence of DTTN with χ = 10. For |x2 − x1| < L/2, the data can be described by as linear
behaviour in log |x2 − x1|. We observe that as L increases, the resulting value of the scaling power a also
increases towards the expected value of 2. We have also checked that the differences between χ = 10
and 20 remain within the error bars and hence we use χ = 10 for calculations of 〈〈~sx1 · ~sx2〉〉 in fig. 5(a).
We further note that fig. 5(a) shows a clear difference in the correlation function between even and odd
distances, due to the fact that singlets can only form with nearest neighbours on each coarse graining scale.
While eq. (12) neatly describes the power law behaviour of the data, a more accurate ansatz should be

〈〈~sx1 · ~sx2〉〉 ' A〈e−DTTN(x1,x2)〉a. (13)

We plot the fit to (13), along with the correlation data rescaled to remove the even-odd variation [33], in
fig. 5(b). This shows that 〈〈~sx1 · ~sx2〉〉 ≈ (1.67± 0.10)〈exp[−DTTN]〉(0.69±0.01) is a remarkably accurate fit to
the data for all length scales. Our result implies that the majority of the correlation information is stored
in the structure of the TTN rather than the contents of the tensors.

Entanglement Entropy

In general the entanglement entropy SA|B = −TrρAlog2ρA is difficult to compute as the size of the reduced
density matrix ρA scales exponentially with the size of block A. The TTN representation of tSDRG gives an
alternative means of finding SA|B for any bipartitions A and B of the system. In a similar manner to the
correlation functions, the geometry of the tensor network is related to its ability to capture entanglement.
As discussed in the previous section, SA|B is proportional to the minimum number of indices, nA, that one
would have to cut to separate a block A of spins from the rest B of the chain [16, 26]. For the TTN the
position of the block in the chain alters the number of indices that have to be cut to separate it from the rest
of the system. This suggests that there are spatial regions in the chain that are more and less entangled,
which is likely to be true for a strongly disordered spin chain.
In refs. [35, 34], Refael and Moore calculate a block entanglement SA,B in the random singlet phase and
show that it scales as (ln[2]/3) log2 LB where region B is a block of extent LB in the centre of the spin chain.
We show the resulting SA,B in fig. 6(a). The figure clearly indicates that finite size effects become prevalent
for large LB, so we fit for LB ≤ L/2 only. The resulting scaling behaviour SA,B ≈ (0.22 ± 0.02)log2LB is
fully consistent with previous results [35]. We also examine the entanglement entropy per bond, S/nA, of
a TTN for both left-right bipartitions A|B and blocks A,B with χ = 10 when averaging over 500 disorder
configurations with L = 50. Figure 6(b) shows that away from the boundaries S/nA saturates to the same
constant 0.47 ± 0.02 in both cases. Note that for LB ∼ L/2, we find that up to 20% of our samples for
χ = 10 lead to calculations of SA,B consuming memory beyond 100GB and therefore fail to complete.
Nevertheless, we believe that this will not greatly change the average values of SA,B/nA reported here as
the higher failure rate is for block sizes where boundary conditions become influential, which is supported
by the calculations for smaller χ. For χ = 4 we find 0.42±0.02 for both blocks and bipartitions with a much
lower failure rate (< 1%) due to the smaller size of the density matrices. This might conceivably suggest
that S/nA = 0.5 is a limiting value for larger χ and L. This is consistent with ref. [16] and implies that the
entanglement entropy is proportional to the length of the holographic minimal surface that connects the
two blocks.
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Figure 6: Reproduced from [26]. (a) The entanglement entropy SA,B (black) averaged over 500 samples as
a function of the size of a block LB placed in the middle of a chain with L = 50 for χ = 10. The fitting
(red, solid line) gives SA,B = (0.22± 0.02)log2LB + (1.12± 0.05) for LB ≤ 25, above which finite size effects
dominate. The grey shaded region indicates the accuracy of the fit. The (green) dashed line shows the
entanglement scaling from ref. [34] with the vertical position fitted to the point LB = 2. The straight black
lines are a guide to the eye only. At the bottom, we show the failure rate in percent (crosses) for different
LB. (b) Entanglement entropy S (black circles) and entanglement entropy per bond S/nA (red diamonds)
for left-right bipartitions A|B (top, open symbols) and central blocks A,B (bottom, filled symbols) with
χ = 10. The entanglement per bond saturates to 0.47±0.02 for bipartitions and 0.48±0.02 for blocks (grey
shaded regions).

Conclusions and outlook

The use of tensor networks within the fields of condensed matter physics and quantum information theory
is becoming ever more common. MPS based DMRG is widely believed to be the most accurate method
of numerically modelling 1D systems and it is being applied in increasingly complicated scenarios [5, 4].
PEPS are being used both as a numerical method and as an analytic platform to study two dimensional
strongly correlated systems, particularly topological phases of matter [36, 37]. MERA and holographic
tensor networks are beginning to be applied in various other fields such as in high energy physics to
potentially link entanglement and gravity [38], and quantum information in the creation of holographic
error correction codes [39].
There are many ways that tensor networks can aid the study of disordered systems. Although DMRG is
in some ways imperfect for the modelling of disorder, it is so efficient that much can still be learned by
applying it [40]. Beyond the Heisenberg and Bose-Hubbard models, there are still a myriad of possible
Hamiltonians that can be examined with DMRG. A current area of intense research is many-body local-
isation (MBL), the generalisation of Anderson localisation to interacting many-body systems [41]. It is
believed that the area law holds for all excited states in systems with MBL up to some mobility energy,
unlike gapped quantum systems where only the ground state is area law satisfying [42]. This in principle
should allow for an efficient MPS representation, and therefore accurate DMRG simulation, of any state in
a 1D MBL spectrum. Strong disorder renormalisation techniques such as tSDRG can be used as high preci-
sion methods when disorder is strong. The method should be accurate for use with the FM/AFM disordered
spin-1/2 Heisenberg model where large effective spins would be created as the renormalisation progresses
[30]. Beyond spin-1/2 there have been exciting discoveries in disordered spin-3/2 Heisenberg systems,
where the rich phase diagram contains topological phases as well as spin doublet and triplet phases [43].
It would be fascinating to uncover the optimal tensor network geometries in these situations.
More generally our results suggest that it might be possible to construct an algorithm that can decide
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autonomously on the best network geometry for a particular system under consideration. Currently the
geometry in most tensor network approaches is set by hand using prior knowledge of the model. In a
network that can self optimise the structure, the final geometry can become a resource for learning about
the properties of the wavefunction. Perhaps with these ideas, truly scalable 2D and 3D tensor network
algorithms may emerge for clean and disordered systems.
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Hydrogen and helium under extreme pressures
Bartomeu Monserrat

Introduction

Hydrogen and helium account for almost all the visible matter in the Universe, with hydrogen representing
75% of the total, and helium the rest. As a consequence, they are major components of all astrophysical ob-
jects, from giant planets, to stars and white dwarf stars. Inside these celestial bodies, they are found under
extreme conditions of temperature and pressure, unattainable in the laboratory. For example, hydrogen
is thought to be present in the core of Jupiter, where the pressure reaches several terapascal; this is 10
times larger than the pressure at the core of the Earth, and over 10 million times larger than atmospheric
pressure.
Computational methods for the description of the quantum mechanics of electrons and nuclei allow us
to study these systems under the relevant conditions in a computer. Electrons play a central role in the
properties of matter, from structure to electronic, optical, magnetic, and thermal behaviour. Computational
methods such as density functional theory (DFT) and quantum Monte Carlo (QMC) allow us to describe the
electronic structure of matter with high accuracy. The heavier atomic nuclei can often be treated as a static
background to the electrons. However, for the light elements – hydrogen and helium being the lightest
of all – and at high temperature, nuclear motion becomes central, and a proper quantum description is
required.
Here, we will describe the theoretical and computational methods proposed in the thesis to accurately
describe the quantum mechanical motion of atomic nuclei, and their application to the study of the phase
diagrams of hydrogen and helium at high pressure. In particular, new methods to describe anharmonic
vibrations in solids composed of light elements, and the coupling of nuclear motion to electrons will prove
essential for a correct understanding of the physics of these systems. In Sec. , we will describe the first
theoretical study of hydrogen in the pressure range 100–400 GPa that allows us to explain the existence
of a temperature-stabilised structure known as phase IV. In Sec. , we will study the metallisation of solid
helium, which is found to occur at about 30 TPa, and which has major implications for the cooling of white
dwarfs and the field of cosmochronology.

Phase diagrams

The computational construction of phase diagrams involves two steps:

1. The search for candidate structures under the conditions of interest.

2. The accurate calculation of their Gibbs free energy, in order to determine the thermodynamically
stable structures.

Computational studies start by identifying a range of candidate structures using structure searching meth-
ods. In the case of hydrogen, the seminal works of Pickard and Needs [1, 2] using the ab initio random
structure searching (AIRSS) method [3, 4] provided many of the structures that are energetically com-
petitive in the pressure range 100–400 GPa. AIRSS works on a very simple but effective principle: select a
set of random positions for the atoms in a random simulation cell, and then relax the initial structure to
the local minimum of enthalpy. Repeating this process a large number of times provides a fair description
of configuration space, and delivers a range of candidate structures. The basic AIRSS algorithm can be
modified by the application of constraints, such as symmetry or minimum atomic distances.
In this work, our focus will be on the second step of the construction of phase diagrams. The Gibbs free
energy G of a solid at pressure P and temperature T is:

G = Fn + Fe, (14)

IoP Computational Physics Group Newsletter
m comp.iop.org B mpinna@lincoln.ac.uk Page 21

http://comp.iop.org
mailto:mpinna@lincoln.ac.uk


where the Helmholtz free energy is given by F = E − TS for energy E and entropy S. The phase diagram
is constructed with the structures that minimise the Gibbs free energy.
The electronic component of the Gibbs free energy is typically calculated using density functional theory or,
if a higher degree of accuracy is required, diffusion Monte Carlo. These are both well established methods.
The nuclear motion component of the Gibbs free energy is usually calculated using the harmonic approxi-
mation. Within this approximation, nuclear vibrations of small amplitude about equilibrium are considered,
and the resulting Hamiltonian reads:

Hhar =
∑
q,ν

−1

2

∂2

∂u2qν
+

1

2
ω2
qνu

2
qν , (15)

where uqν is the amplitude of a normal mode coordinate labelled by wavevector q and branch index ν,
and ωqν is the corresponding frequency. Equation (15) is particularly suitable for computation, as each
degree of freedom is decoupled from others, and in practice one only has a large number of 1-dimensional
equations. In fact, the Schrödinger equation resulting from the harmonic approximation can be solved
analytically.
For light elements such as hydrogen or helium, the assumption that nuclear vibrations have small ampli-
tudes is no longer valid, and potential energy terms beyond the quadratic term in Eq. (15) need to be
considered. These are called anharmonic terms. To retain the computational simplicity of the harmonic
approximation, we choose to represent the anharmonic potential energy by the principal axes approxima-
tion [5]:

Hanh =
∑
q,ν

−1

2

∂2

∂u2qν
+
∑
q,ν

Vqν(uqν) +
1

2

∑
q,ν

∑
q′,ν′

′
Vqν;q′ν′(uqν , uq′ν′) + · · · , (16)

where the prime sum indicates that the term (q, ν) = (q′, ν ′) is excluded, and the factor 1/2 accounts for
double counting. Note that the harmonic approximation is recovered for Vqν(uqν) = 1

2ω
2
qνu

2
qν , and setting

all other terms to zero. Otherwise, an anharmonic potential energy is obtained.
The anharmonic potential energy in Eq. (16) has the advantage that the one-body term, which typically
dominates, is still a set of one-dimensional uncoupled terms, the same computational complexity as the
harmonic approximation. Higher-order terms leads to increasing complexity, and a balance between accu-
racy and computational expense needs to be considered. The anharmonic Schrödinger equation no longer
has analytic solutions, and instead we solve it using a mean-field approach for the anharmonic vibrational
wave function |Φ〉 =

∏
q,ν |φqν(uqν)〉,

Hanh|Φ〉 = Eanh|Φ〉. (17)

The anharmonic vibrational nuclear energy Eanh is obtained by minimising the energy with respect to the
single-particle states |φqν〉.
The wave function of any quantum system contains all the information about the state of the system.
Therefore, once the anharmonic vibrational equations have been solved to determine the vibrational nu-
clear energy and wave function, expectation values of other physical properties may be calculated. For a
quantity with observable Ô, the expectation at temperature T is:

〈Ô〉 =
1

Z
∑
M

〈ΦM|Ô|ΦM〉e−EM/kBT , (18)

where Z =
∑

M e−EM/kBT is the partition function, M represents a quantum state, and kB is Boltzmann’s
constant. Equation (18) may be evaluated by a many-body expansion parallel to the energy expansion in
Eq. (16), or alternatively by using Monte Carlo sampling over the vibrational density. As an example, if
the quantity of interest is the electronic band gap, then the expectation value in Eq. (18) may be used to
calculated the temperature dependence of the band gap due to electron-phonon coupling.
With the treatment of nuclear vibrations described above, we are now equipped to study the phase dia-
grams of hydrogen and helium under extreme pressures. All density functional theory calculations have
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Figure 1: Phase diagram of high pressure hydrogen determined experimentally (left), computationally
using DFT and the harmonic approximation (center), and computationally using DMC and including an-
harmonic vibrations (right).

been performed using the plane-wave pseudopotential code CASTEP [6], and numerical details of the cal-
culations are provided in the corresponding references. The quantum Monte Carlo calculations, performed
by collaborators, have used the CASINO program [7].

High pressure hydrogen

Hydrogen is the simplest of all elements – a proton and an electron – but its phase diagram is rich and
challenging to study. Static high pressure experiments have reached pressures just above those at the centre
of the Earth, of up to 400 GPa. Raman and infrared (IR) spectroscopies have been used to probe these high
pressure systems, establishing the existence of at least four high pressure solid phases of hydrogen, as
shown in Fig. 1a. Phase IV, which appears to be stable only above room temperature at the higher pressure
range, was only discovered recently [8, 9]. Protons scatter X-rays very weakly, and Raman and IR data are
insufficient to unambiguously identify the crystal structures of the observed phases.
Candidate structures for the high pressure phases of hydrogen were identified in the seminal works of
Pickard and Needs using the AIRSS method. However, the standard calculations of the relative Gibbs free
energies of these structures, using DFT for the electronic energy and the harmonic approximation for the
vibrational energy, fail to reproduce the experimental phase diagram, as shown in Fig. 1b. In particular,
there appears to be no structure corresponding to phase IV.
This thesis shows that the more accurate diffusion Monte Carlo method for the calculation of the electronic
energy, together with the inclusion of anharmonic nuclear motion, are required to predict a phase diagram
with boundaries in qualitative agreement with experiment, shown in Fig. 1c. The use of state of the art
quantum mechanical methods for the description of both electrons and nuclei allows us to accurately
reproduce the known phases of high pressure hydrogen. It is then possible to go beyond those pressures
accessible in the laboratory, and study the metallisation and dissociation of hydrogen [10], pushing our
models closer to the pressures found at the interiors of giant planets and stars.

High pressure helium

The two electrons in the helium atom fill the 1s state, rendering helium an inert noble gas. Under pressure,
the electronic distribution in a material delocalises, and at sufficiently high pressures all materials are
metallic. The inertness of helium atoms leads to extraordinarily high pressures for the metallisation of the
solid phase, only accomplished in the terapascal pressure range. Helium under these pressures is a major
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Figure 2: Cross section showing the interior of a white dwarf star. The core (red) is dominated by the
electron degenerate matter and is isothermal. The helium-dominated outer layers are metallic at higher
pressures (dark blue), and insulating closer to the surface (light blue). Electrons carry heat through metallic
helium, but slower photon diffusion dominates in the insulating layer.

component of the outer layers of white dwarfs, and as such plays a major role in the cooling rate of these
stars.
White dwarf stars constitute the final stage in the life of the vast majority of stars in the Universe, and
our own Sun will become a white dwarf in a few billion years. The nuclear fuel in the interior of these
stars has been exhausted, and their immense gravitational pull has contracted them to very high densities.
At sufficiently high densities, the electrons are pushed close together, and the Pauli exclusion principle
that prevents any two electrons from occupying the same state leads to the so-called electronic pressure,
that for white dwarfs is sufficient to balance the gravitational pull inwards. Thus, white dwarfs, although
initially hot, do not have an internal energy source, and therefore cool down over timescales of billions of
years to reach thermodynamic equilibrium with the surrounding cold Universe. The cooling rate is initially
very high, but it decreases dramatically below about 10, 000 K. In fact, it becomes so slow that it is believed
the Universe is not old enough for any white dwarf star to have cooled to 2.7 K yet, the temperature of the
cosmic microwave background.
Understanding the cooling rate of white dwarfs, together with observations of their current temperatures
– that are related to their luminosity – allows astrophysicists to date these stars. From these dates, lower
limits may be placed on the ages of stellar clusters, galaxies, and indeed the entire Universe. This is the
field of chosmochronology – the dating of the cosmos. Crucially, accurate dates can only be achieved if
the cooling rate of white dwarfs is fully understood, which requires an understanding of the rate of heat
transport from the hot isothermal core, through the outer layers, and to the surface. The helium-rich outer
layers make an understanding of the phase diagram of helium central to this problem.
In Fig. 2 we show a schematic cross-section of a white dwarf. The large core (in red) is composed of the
degenerate electrons that balance the gravitational pull, and is isothermal. The helium-rich outer layers
can be separated into the metallic helium inner layer (dark blue) at higher pressure, and the insulating
helium outer layer (light blue). Heat is carried by mobile electrons through the metal, but upon reaching
the insulating layer, the much slower photon diffusion is the dominant mechanism. An understanding of
the metallisation conditions of helium therefore has profound consequences for the relative importance of
the two layers, and for the overall cooling rate of white dwarfs.
Early estimates of the metallisation of helium were based on the calculation of the closing of the electronic
band gap as a function of pressure. These calculations, performed using the diffusion Monte Carlo method,
neglected the influence of nuclear motion on the electrons. The most accurate calculations predicted a
metallisation pressure of 27 TPa [13]. In this thesis, we included the coupling of electrons to nuclear
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Figure 3: Phase diagram of helium at high pressure. The new metal-insulator boundary captures the tem-
perature dependence with the inclusion of electron-phonon coupling. The transition to the plasma phase
is taken from Ref. [11]. This diagram is reproduced from Ref. [12]

vibrations (so-called electron-phonon coupling), to predict a new higher metallisation pressure for helium,
of 32 TPa at zero temperature. Furthermore, as nuclear motion encapsulates the changes in matter due to
temperature, our predictions could be extended to finite temperatures, as shown in the phase diagram of
Fig. 3.
The higher metallisation pressure that we predict for solid helium implies that the outer insulating layers in
white dwarfs are wider than previously believed. Therefore, the cooling rate of white dwarf stars is slower,
and this calls for a revision of current estimates of the ages of these stars.

Outlook

The new theoretical and computational methods proposed in the thesis, and described in this work, have
allowed us to calculate the phase diagrams of high pressure solid hydrogen and helium with unprecedented
accuracy. These new phase diagrams are essential for the description of the physical processes found in
astrophysical objects, such as the strong magnetic fields around giant planets, or the cooling rate of white
dwarf stars.
Increasing computational power, together with new methods and algorithmic improvements, continue to
expand the pressure-temperature regimes of physics that can be explored. The methods described in this
thesis could find ample application for the study of other high-pressure compounds, for example those
found in the interior of the Earth, whose chemistry adds a new layer of complexity. Furthermore, the
methods presented here are not limited to the study of high pressure. Temperature is important in many
interesting physical processes, and the accurate description of quantum nuclear motion becomes central.
Indeed, we have successfully applied the methods described here to address problems in a wide range of
areas, from explaining why snowflakes are hexagonal rather than cubic [14], to understanding the effects
of temperature on nuclear magnetic resonance spectra [15]. Continued development of new algorithms has
significantly reduced the computational cost of the methods first proposed in the thesis [16, 17], paving
the way for new and complex applications.
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Computational Physics Group News

• The Computational Physics Annual PhD Thesis Prize
Each year, the IoP Computational Physics Group awards a Thesis Prize to the author of the PhD thesis
that, in the opinion of the Committee, contributes most strongly to the advancement of computational
physics.

The winner of the 2016 Thesis Prize is Cathal Ó Broin for his thesis entitled A New GPU-based Com-
putational Framework for the Ab-initio Solution of the TDSE for Atomic and Molecular One-Electron
Systems under Intense Ultra-Short Laser Fields, which was undertaken at Dublin City University.

Runner-up prizes 2016 are awarded to Andrew Goldsborough, for his thesis entitled Tensor Networks
and Geometry for the Modelling of Disordered Quantum Many-Body Systems, carried out at the Uni-
versity of Warwick, and Patrick Cannon, for his thesis entitled Numerical Simulation of Wave-Plasma
Interactions in the Ionosphere, carried out at the University of Lancaster.

Thanks to the generosity of AWE (www.awe.co.uk) Cathal receives £300 and Andrew and Patrick re-
ceive £100 each for their achievements. Articles describing Cathal and Andrew’s work appear earlier
in this issue, together with the work of Bartomeau Monserrat who was a runner-up in last year’s
competition.

Details of Patrick’s work will appear in a forthcoming issue of the newsletter.

For this year’s prize applications are encouraged across the entire spectrum of computational physics.
Entry is open to all students from an institution in the UK or Ireland, whose PhD examination has
taken place since 1st January 2016 and up to the submission deadline.

Prize winners will be invited to write a feature article in the Computational Physics Group newsletter.
The submission deadline is 30 April 2017.

Candidates are asked to note that a similar thesis prize is offered by the Theory of Condensed Matter
(Computational Physics) Group and the Committees have agreed that both prizes will not be awarded
to the same applicant.

The submission format is as follows:

– A four page (A4) abstract describing the background and main achievements of the work

– A one page (A4) citation from the PhD supervisor

– A one page (A4) confidential report from the external thesis examiner

Entries (PDF documents preferred) should be submitted by email, with "IOP CPG Thesis Prize" as the
subject header, to Dr Arash Mostofi (a.mostofi@imperial.ac.uk). Any queries should also be directed
to Dr Arash Mostofi. A few more details, including a list of past winners, can be found on the group
webpage http://www.iop.org/activity/groups/subject/comp/prize/page_40691.html.
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• IoP Computational Physics Group - Research Student Conference Fund

The Institute of Physics Computational Physics Group is pleased to invite requests for partial financial
support towards the cost of attending scientific meetings relevant to the Group’s scope of activity.
The aim of the scheme is to help stimulate the career development of young scientists working in
computational physics to become future leaders in the field.

Further details on this award can be found at:

www.iop.org/about/grants/research_student/page_38808.html

Conference and Workshop reports

• 47th Annual APS-DAMOP Meeting Providence (RI),USA,2016.

23-27 May 2015 at Rhoda Island, USA.

Highlights. The regular DAMOP Meeting is an annual conference organised by the Division of Atomic
and Molecular Optics of the American Physical Society. This year’s edition has been held in Providence
(Rhode Island) in the United States, in the period between the 23rd and the 27th day of May. It is usu-
ally a very large event: the number of participants was of the order of 2000, with 92 invited speakers
and hundreds of contributed talks. The participants include some of the most prominent researchers
in atomic and optical physics. This edition comprehended people from the best experimental and
theoretical groups in the world (MIT, Harvard, JILA, JQI, Rice, LENS, Trento, Cambridge, Munich,
ENS, among the others), often including the principal investigators. It has also been an extraordinary
chance for PhD students and young researchers to grasp a broader spectrum of the activities related
to the field of Bose-Einstein Condensates, and to present their work to a vast and outstanding audi-
ence. The conference was structured as follows: Monday 23rd a Graduate Student Symposium was
held, mainly devoted to postgraduate students, including four introductory lectures on different hot
topics in the field of BEC; from Tuesday 24nd to Friday 27th, a large number of invited and con-
tributed talk sessions on various categories of research activities were organised. There were up to 8
parallel talk sessions, and the people were free to move from one to another, so to follow the most
interesting seminars. Moreover, three different poster sessions were set up, each showing more than
hundred posters. Benefits. I had the great opportunity to talk to many researchers about my and their
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research, and to share ideas and impressions about the direction towards which I should point. In
particular, thanks to the fact that I had a contributed talk slot, I could present my results to a large au-
dience, and collect comments and suggestions about them. Moreover, I had the opportunity to meet
with both my supervisors (prof. Franco Dalfovo (Trento) and prof. Nick Proukakis (Newcastle)), and
we had deep and valuable discussions about our common work. Aside from the conference, I visited
the BEC experimental laboratories at MIT and I was introduced to the research activities performed
therein. Success. I truly believe the conference was fully successful, and indeed it was reported to be
the most participated ever organised DAMOP meeting. I consider this kind of meeting to be of great
importance for the advancement of science, and I hope to be able to participate again.

Report kindly provided by Fabrizio Larcer, PhD student,JQC Durham-Newcastle and University of Trento

• American Physical Society (APS),USA,2016.

14-18 March 2016 Baltimore, USA.

The APS March Meeting is an annual conference organised by the American Physical Society, it gath-
ers physicists from many different areas to share groundbreaking research from industry, universities,
and major laboratories. This year’ s March Meeting was held at the convention centre in Baltimore,
which is located in the downtown area of Baltimore and just a five minute walk from the Inner Har-
bour area. Almost 10,000 people were in attendance, with around 9,000 people giving talks over 5
days (myself included). There were 24 APS units represented at the conference including the Atomic,
Molecular & Optical Physics division, Materials Physics division, the Quantum Information Topical
group, the Industrial & Applied Physics forum, and many more. The days were split up into three
sessions, with each session being around two and a half hours. Most talks contained within these ses-
sion were ten minutes with two minutes for questions, though sometimes there would be invited talks
from some of the big groups which would be half an hour. As my research area is in superconducting
circuits this is where I spent most of my time. This conference is a very important one as it gives
everyone the opportunity to find out about work being performed by research groups around the
world, and to publicise your own work with the potential for feedback and collaboration with other
groups if they find interest in your work. Generally much of the work that was presented had not
yet been published, so attending the conference was a great way to find out about research groups
results ahead of publication and to look out for potential publications in the near future. In particular
it was great to listen to the talks coming from the big research groups in superconducting circuits
such as Yale, Google, and IBM. The advances that these groups have made towards building quantum
computers in the past year have been astounding and the results produced at the meeting this year
have shown how much further we have come towards this goal. Apart from the focus sessions there
were also invited sessions which would give an overview of a specific area, with the talks being given
by some of the big names within that research area. On the Wednesday there was an invited session
titled 20 Years of Quantum Error Correction with talks being given by people such as John Preskill,
Daniel Gottesman, David DiVincenzo, Philipp Schindler and Michel Devoret. It was great to see talks
given by some of the people who had effectively started the field and made for great listening. These
invited session were also a great opportunity to listen to talks that may not be in your field as they
were more accessible than the focus talks. For example, I attended a session on Physics and Cancer
which was a very interesting set of talks on how physics could be used in the “war on cancer”. In
all the conference was a great one to attend - it gave me the opportunity to present my work to
groups who may not necessarily have seen it otherwise, and to obtain feedback from my peers. I was
able to see the most recent results produced by research groups before the official publication and
was provided with the opportunity to directly interact with researchers from these groups and to ask
questions on their work.
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Report kindly provided by Joseph Allen, PhD student, Faculty of Engineering & Physical Science, Univer-
sity of Surrey

Upcoming Events of Interest
Upcoming events of interest to our readers can now be found via the following web links.

• IOP’s index page for scientific meetings, including conferences, group events and interna-
tional workshops:
www.iop.org/events/scientific/index.html

• IOP Conferences page for conference information, calendar and noticeboard:
www.iop.org/events/scientific/conferences/index.html

• All events being run or supported by IOP Groups including calendar and links to event web
pages:
www.iop.org/events/scientific/group/index.html

• Thomas Young Centre: The London Centre for Theory and Simulation of Materials organises
many different kinds of scientific events on the theory and simulation of materials, including
Highlight Seminars, Soirees and Workshops. For further details of upcoming events please
visit:
www.thomasyoungcentre.org/events/

• CECAM is a European organization devoted to the promotion of fundamental research on
advanced computational methods for atomistic and molecular simulation and their applica-
tion to important problems in science and technology. CECAM organises a series of scientific
workshops, tutorials and meetings. For further details please visit:
www.cecam.org

Computational Physics Group Committee
The current members of the IoP Computational Physics Group committee with their contact details are as
follows:

Hans Fangohr h.fangohr@soton.ac.uk
Vera Hazelwood (Chair) Vera.Hazelwood@smithinst.co.uk
Stephen Hughes Stephen.Hughes@awe.co.uk
Paul Hulse paul.hulse@sellafieldsites.com
Arash Mostofi (Thesis prize) a.mostofi@imperial.ac.uk
John Pelan j.pelan@gatsby.ucl.ac.uk
Marco Pinna (Newsletter) mpinna@lincoln.ac.uk
David Quigley d.quigley@warwick.ac.uk
Simon Richards s.richards@physics.org
Jesus Rogel (Secretary) j.rogel@physics.org
David Shipley david.shipley@npl.co.uk
Nathan Sircombe (Treasurer) Nathan.Sircombe@awe.co.uk
Nick Parker nick.parker@ncl.ac.uk
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Some useful web links related to the Computational Physics Group are:

• CPG webpages
comp.iop.org

• CPG Newsletters
Current issue:
www.iop.org/activity/groups/subject/comp/news/page_40572.html
Previous issues:
www.iop.org/activity/groups/subject/comp/news/archive/page_53142.html
www.soton.ac.uk/∼fangohr/iop_cpg.html

Related Newsletters and Useful Websites
The Computational Physics Group works together with other UK and overseas computational physics
groups. We list their newsletter locations and other useful websites here:

• Newsletter of the Computational Physics Division of the American Physical Society:

www.aps.org/units/dcomp/newsletters/index.cfm

• Europhysicsnews newsletter of the European Physical Society (EPS):

www.europhysicsnews.org/

• Newsletter of the Psi-k (Ψk) network:

www.psi-k.org/newsletters.shtml
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